::p_load(sf, tidyverse) pacman
Hands-on Exercise 1A: Geospatial Data Wrangling with R
1 Overview
In this hands-on exercise, I will be sharing how to import and wrangle geospatial data using appropriate R packages.
2 Getting Started
2.1 Packages
For this exercise, we will be using sf and tidyverse packages. The code chunk below installs and loads sf and tidyverse packages into R environment.
2.2 Data Acquisition and Extraction
We will extract the following data sets from these sources:
Master Plan 2014 Subzone Boundary (Web) from data.gov.sg
Pre-Schools Location from data.gov.sg
Cycling Path from LTADataMall
Latest version of Singapore Airbnb listing data from Inside Airbnb
After we have downloaded these data sets, we created a sub-folder called data
. Within the data
sub-folder, we created 2 sub-folders, namely geospatial
and aspatial
. Master Plan 2014 Subzone Boundary (Web)
, Pre-Schools Location
and Cycling Path
files should be placed in the geospatial
folder while the Singapore Airbnb listing data
should be in the aspatial
folder.
3 Importing Geospatial Data
3.1 Importing polygon feature data
The code chunk below uses st_read()
function of sf package to import the planning subzones, which is a polygon feature data frame.
<- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL") mpsz
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\sihuihui\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
The message above also tells us that mpsz
’s geometry type is multipolygon, there are a total of 323 multipolygon features and 15 fields in mpsz
and it is in svy21 projected coordinates systems.
3.2 Importing polyline feature data in shapefile form
The code chunk below uses st_read()
function of sf package to import CyclingPath
shape file into R as line feature data frame.
= st_read(dsn = "data/geospatial", layer = "CyclingPathGazette") cyclingpath
Reading layer `CyclingPathGazette' from data source
`C:\sihuihui\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21
From the above, we know that cyclingpath
has a total of 2558 features and 2 fields, is a multilinestring, and is in svy21 projected coordinates system.
3.3 Importing GIS data in kml format
We will also use st_read()
to import GIS data in kml format:
= st_read("data/geospatial/PreSchoolsLocation.kml") preschool
Reading layer `PRESCHOOLS_LOCATION' from data source
`C:\sihuihui\ISSS624\Hands-on_Ex\Hands-on_Ex1\data\geospatial\PreSchoolsLocation.kml'
using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
From the above, we know that preschool
has 2290 features and 2 fields, a point feature data frame, and is in wgs84 coordinates system.
4 Checking the Content of A Simple Feature Data Frame
We can use different ways to retrieve information related to the content of a simple feature data frame.
4.1 Working with st_geometry()
st_geometry()
displays basic information of the feature class such as type of geometry, the geographic extent of the features and the coordinate system of the data.
st_geometry(mpsz)
Geometry set for 323 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
4.2 Working with glimpse()
glimpse()
reveals the data type of each fields.
glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1, 3, 2, 2, …
$ SUBZONE_N <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERSON HIL…
$ SUBZONE_C <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03", "BMSZ07",…
$ CA_IND <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N", "N", "N",…
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUKIT MERAH",…
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "QT", "QT",…
$ REGION_N <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "CENT…
$ REGION_C <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR",…
$ INC_CRC <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF02B13E0E5",…
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05…
$ X_ADDR <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96, 25358.82,…
$ Y_ADDR <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70, 29991.38,…
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594, 4428.913,…
$ SHAPE_Area <dbl> 1630379.27, 559816.25, 160807.50, 595428.89, 387429.44, 103…
$ geometry <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOLYGON (…
4.3 Working with head()
While glimpse()
displays all the variables in the feature object, head()
reveals the complete information of a feature object, which gives us a snapshot of the simple feature data frame.
head(mpsz, n=5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 1 1 MARINA SOUTH MSSZ01 Y MARINA SOUTH
2 2 1 PEARL'S HILL OTSZ01 Y OUTRAM
3 3 3 BOAT QUAY SRSZ03 Y SINGAPORE RIVER
4 4 8 HENDERSON HILL BMSZ08 N BUKIT MERAH
5 5 3 REDHILL BMSZ03 N BUKIT MERAH
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR
1 MS CENTRAL REGION CR 5ED7EB253F99252E 2014-12-05 31595.84
2 OT CENTRAL REGION CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3 SR CENTRAL REGION CR C35FEFF02B13E0E5 2014-12-05 29654.96
4 BM CENTRAL REGION CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5 BM CENTRAL REGION CR 85D9ABEF0A40678F 2014-12-05 26201.96
Y_ADDR SHAPE_Leng SHAPE_Area geometry
1 29220.19 5267.381 1630379.3 MULTIPOLYGON (((31495.56 30...
2 29782.05 3506.107 559816.2 MULTIPOLYGON (((29092.28 30...
3 29974.66 1740.926 160807.5 MULTIPOLYGON (((29932.33 29...
4 29933.77 3313.625 595428.9 MULTIPOLYGON (((27131.28 30...
5 30005.70 2825.594 387429.4 MULTIPOLYGON (((26451.03 30...
Here is an article on the difference between glimpse()
and head()
.
“the head() function shows the first few rows (observations) of the Data Frame. The glimpse() function displays the number of observations, and variables (columns) along with the type, name, and values of the latter.”
5 Plotting Geospatial Data
Other than looking at feature information, we should also visualise geospatial features. plot()
is a quick and useful way to plot geospatial features:
plot(mpsz)
plot()
returns us a multi-plot of all attributes, up to a reasonable maximum as shown above.
If plot() is unable to plot all attributes, a warning would appear.
We can choose to plot only the geometry using the code chunk below.
plot(st_geometry(mpsz))
Alternatively, we can also choose the plot the sf object by using a specific attribute as shown in the code chunk below.
plot(mpsz["PLN_AREA_N"])
We will learn more about plotting high cartographic quality plots using tmap package in Hands-On Exercise 1B.
6 Working with MAP Projection
Map projection is an important property of a geospatial data. In order to perform geoprocessing using two geospatial data, we need to ensure that both geospatial data are projected using similar coordinate system. In this section, we will project a simple feature data frame from one coordinate sstem to another coordinate system.
6.1 Assigning EPSG code to a simple feature data frame
First, we will check the coordinate system of mpsz
simple feature data frame using st_crs()
of sf package:
st_crs(mpsz)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
Although mpsz
data frame is projected in svy21, the above results shows that the EPSG is 9001, which is the wrong EPSG code because the correct EPSG code for svy21 should be 3414.
Hence we will assign the correct EPSG code to mpsz
data frame using st_set_crs()
of sf package:
<- st_set_crs(mpsz, 3414) mpsz3414
We will check the coordinate system of mpsz
simple feature data frame using st_crs()
and we should see that the EPSG code is now 3414.
st_crs(mpsz3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
6.2 Transforming the projection of preschool from wgs84 to svy21
Using st_crs()
, we check the projection of preschool data frame:
st_crs(preschool)
Coordinate Reference System:
User input: WGS 84
wkt:
GEOGCRS["WGS 84",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,
ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],
AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4326]]
As preschool is in wgs84 coordinate system, we will need to reproject preschool from a wgs84 coordinate system to svy21 coordinate system using st_transform()
.
Note that st_transform()
converts or transforms coordinates of simple feature while st_set_crs()
change the coordinate reference system without modifying any coordinates.
<- st_transform(preschool, crs = 3414) preschool3414
We will check the projection of preschool data frame:
st_crs(preschool3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
7 Importing and Converting an Aspatial Data
In this section, we will import an aspatial data into R environment and save it as a tibble data frame. Then, convert it into a simple feature data frame using the x- and y- coordinates in listing
of Inside Airbnb data.
7.1 Importing the aspatial data
We use read_csv()
of readr package to import the aspatial data in. The output is listings
and it is a tibble data frame;
<- read_csv("data/aspatial/listings.csv") listings
We check the imported data using list()
of Base R.
list(listings)
[[1]]
# A tibble: 3,483 × 18
id name host_id host_name neighbourhood_group neighbourhood latitude
<dbl> <chr> <dbl> <chr> <chr> <chr> <dbl>
1 71609 Villa in… 367042 Belinda East Region Tampines 1.35
2 71896 Home in … 367042 Belinda East Region Tampines 1.35
3 71903 Home in … 367042 Belinda East Region Tampines 1.35
4 275343 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
5 275344 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
6 289234 Home in … 367042 Belinda East Region Tampines 1.34
7 294281 Rental u… 1521514 Elizabeth Central Region Newton 1.31
8 324945 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
9 330095 Rental u… 1439258 Kay Central Region Bukit Merah 1.29
10 369141 Place to… 1521514 Elizabeth Central Region Newton 1.31
# ℹ 3,473 more rows
# ℹ 11 more variables: longitude <dbl>, room_type <chr>, price <dbl>,
# minimum_nights <dbl>, number_of_reviews <dbl>, last_review <date>,
# reviews_per_month <dbl>, calculated_host_listings_count <dbl>,
# availability_365 <dbl>, number_of_reviews_ltm <dbl>, license <chr>
The output reveals that listing tibble data frame consists of 4252 rows and 16 columns. We will be using the latitude and longitude from listings to create a simple feature data frame.
7.2 Creating a simple feature data frame from an aspatial data frame
The code chunk below converts listing data frame into a simple feature data frame by using st_as_sf() of sf packages.
<- st_as_sf(listings, coords = c("longitude", "latitude"), crs=4326) %>%
listings_sf st_transform(crs = 3414)
We then use glimpse()
to examine the content of the newly created simple feature data frame.
glimpse(listings_sf)
Rows: 3,483
Columns: 17
$ id <dbl> 71609, 71896, 71903, 275343, 275344, 28…
$ name <chr> "Villa in Singapore · ★4.44 · 2 bedroom…
$ host_id <dbl> 367042, 367042, 367042, 1439258, 143925…
$ host_name <chr> "Belinda", "Belinda", "Belinda", "Kay",…
$ neighbourhood_group <chr> "East Region", "East Region", "East Reg…
$ neighbourhood <chr> "Tampines", "Tampines", "Tampines", "Bu…
$ room_type <chr> "Private room", "Private room", "Privat…
$ price <dbl> 150, 80, 80, 55, 69, 220, 85, 75, 45, 7…
$ minimum_nights <dbl> 92, 92, 92, 60, 60, 92, 92, 60, 60, 92,…
$ number_of_reviews <dbl> 20, 24, 47, 22, 17, 12, 133, 18, 6, 81,…
$ last_review <date> 2020-01-17, 2019-10-13, 2020-01-09, 20…
$ reviews_per_month <dbl> 0.14, 0.16, 0.31, 0.17, 0.12, 0.09, 0.9…
$ calculated_host_listings_count <dbl> 5, 5, 5, 52, 52, 5, 7, 52, 52, 7, 7, 1,…
$ availability_365 <dbl> 89, 89, 89, 275, 274, 89, 365, 365, 365…
$ number_of_reviews_ltm <dbl> 0, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 0, …
$ license <chr> NA, NA, NA, "S0399", "S0399", NA, NA, "…
$ geometry <POINT [m]> POINT (41972.5 36390.05), POINT (…
Table above shows the content of listing_sf. Notice that a new column called geometry has been added into the data frame. On the other hand, the longitude and latitude columns have been dropped from the data frame.
8 Geoprocessing with sf package
In this section, we will learn to perform tow commonly used geoprocessing functions: buffering and point in polygon count.
8.1 Buffering
The scenario:
The authority is planning to upgrade the exiting cycling path. To do so, they need to acquire 5 metres of reserved land on the both sides of the current cycling path. You are tasked to determine the extend of the land need to be acquired and their total area.
The solution:
Firstly, st_buffer()
of sf package is used to compute the 5-meter buffers around cycling paths
<- st_buffer(cyclingpath, dist = 5, nQuadSegs = 30) buffer_cycling
Then, calculate the area of the buffers:
$AREA <- st_area(buffer_cycling) buffer_cycling
Then sum the total area to derive the total land involved.
sum(buffer_cycling$AREA)
1774367 [m^2]
8.2 Point-in-polygon Count
The scenario:
A pre-school service group want to find out the numbers of pre-schools in each Planning Subzone.
The solution:
The code chunk below performs two operations at one go. Firstly, identify pre-schools located inside each Planning Subzone by using st_intersects()
. Next, length()
of Base R is used to calculate numbers of pre-schools that fall inside each planning subzone.
First, we calculate the number of preschools in each subzone:
$'PreSch Count' <- lengths(st_intersects(mpsz3414, preschool3414)) mpsz3414
Then, check the summary statistics of the PreSch count filed using summary()
:
summary(mpsz3414$'PreSch Count')
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 4.00 7.09 10.00 72.00
We use top_n()
to list the planning subzone with the most number of pre-school:
top_n(mpsz3414, 1, 'PreSch Count')
Simple feature collection with 323 features and 16 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21 / Singapore TM
First 10 features:
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 1 1 MARINA SOUTH MSSZ01 Y MARINA SOUTH
2 2 1 PEARL'S HILL OTSZ01 Y OUTRAM
3 3 3 BOAT QUAY SRSZ03 Y SINGAPORE RIVER
4 4 8 HENDERSON HILL BMSZ08 N BUKIT MERAH
5 5 3 REDHILL BMSZ03 N BUKIT MERAH
6 6 7 ALEXANDRA HILL BMSZ07 N BUKIT MERAH
7 7 9 BUKIT HO SWEE BMSZ09 N BUKIT MERAH
8 8 2 CLARKE QUAY SRSZ02 Y SINGAPORE RIVER
9 9 13 PASIR PANJANG 1 QTSZ13 N QUEENSTOWN
10 10 7 QUEENSWAY QTSZ07 N QUEENSTOWN
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D X_ADDR
1 MS CENTRAL REGION CR 5ED7EB253F99252E 2014-12-05 31595.84
2 OT CENTRAL REGION CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3 SR CENTRAL REGION CR C35FEFF02B13E0E5 2014-12-05 29654.96
4 BM CENTRAL REGION CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5 BM CENTRAL REGION CR 85D9ABEF0A40678F 2014-12-05 26201.96
6 BM CENTRAL REGION CR 9D286521EF5E3B59 2014-12-05 25358.82
7 BM CENTRAL REGION CR 7839A8577144EFE2 2014-12-05 27680.06
8 SR CENTRAL REGION CR 48661DC0FBA09F7A 2014-12-05 29253.21
9 QT CENTRAL REGION CR 1F721290C421BFAB 2014-12-05 22077.34
10 QT CENTRAL REGION CR 3580D2AFFBEE914C 2014-12-05 24168.31
Y_ADDR SHAPE_Leng SHAPE_Area geometry PreSch Count
1 29220.19 5267.381 1630379.3 MULTIPOLYGON (((31495.56 30... 0
2 29782.05 3506.107 559816.2 MULTIPOLYGON (((29092.28 30... 6
3 29974.66 1740.926 160807.5 MULTIPOLYGON (((29932.33 29... 0
4 29933.77 3313.625 595428.9 MULTIPOLYGON (((27131.28 30... 5
5 30005.70 2825.594 387429.4 MULTIPOLYGON (((26451.03 30... 3
6 29991.38 4428.913 1030378.8 MULTIPOLYGON (((25899.7 297... 13
7 30230.86 3275.312 551732.0 MULTIPOLYGON (((27746.95 30... 5
8 30222.86 2208.619 290184.7 MULTIPOLYGON (((29351.26 29... 1
9 29893.78 6571.323 1084792.3 MULTIPOLYGON (((20996.49 30... 11
10 30104.18 3454.239 631644.3 MULTIPOLYGON (((24472.11 29... 1
To calculate the density of pre-school by planning subzone. we first derives the area of each planning subzone:
$Area <- mpsz3414 %>%
mpsz3414st_area()
Then use mutate()
to compute the density of preschool by planning subzone
<- mpsz3414 %>%
mpsz3414 mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)
9 Exploratory Data Analysis
In this section, we will learn how to use appropriate ggplot2 functions to create statistical graphs for exploratory data analysis purposes.
One quick way to plot the preschool density is to use hist()
of R graphics:
hist(mpsz3414$`PreSch Density`)
However hist()
has limited room for further customisation. Hence, we will use functions from ggplot2:
ggplot(data = mpsz3414,
aes(x = as.numeric(`PreSch Density`))) +
geom_histogram(bins = 20,
color = "black",
fill = "light blue") +
labs(title = "Are Pre-Schools Evenly Distributed in Singapore?",
subtitle = "There are many planning subszones with a single pre-school, on the other hand, \nthere are two planning subszones with at least 20 preschools",
x = "PreSchool Density (per km sq)",
y = "Frequency")
Here is a scatterplot showing the relationship between pre-school density and pre-school count.
ggplot(data = mpsz3414,
aes(y = `PreSch Count`,
x = as.numeric(`PreSch Density`))) +
geom_point(color = "blue") +
xlim(0, 40) +
ylim(0, 40) +
labs(title = "Scatter Plot of PreSchool Density and PreSchool Count",
x = "PreSchool Density (per km sq)",
y = "PreSchool Count")